TIGHT CLOSURE OF IDEALS RELATIVE TO MODULES
نویسندگان
چکیده
منابع مشابه
EXTENSION CLOSURE OF RELATIVE k-TORSIONFREE MODULES
Let be a ring. We use mod (resp. mod ) to denote the category of finitely generated left -modules (resp. right -modules). We always assume that and are Artinian algebras and is a faithfully balanced self-orthogonal bimodule, that is, satisfies the following conditions: (1) is in mod and is in mod ; (2) the natural maps → End op and → End are isomorphisms; (3) Ext = 0 and Ext = 0 for any i ≥ 1. ...
متن کاملRelative test elements for tight closure
Test ideals play a crucial role in the theory of tight closure developed by Melvin Hochster and Craig Huneke. Recently, Karen Smith showed that test ideals are closely related to certain multiplier ideals that arise in vanishing theorems in algebraic geometry. In this paper we develop a generalization of the notion of test ideals: for complete local rings R and S, where S is a module-6nite exte...
متن کاملGeometric Interpretation of Tight Closure and Test Ideals
We study tight closure and test ideals in rings of characteristic p 0 using resolution of singularities. The notions of F -rational and F regular rings are defined via tight closure, and they are known to correspond with rational and log terminal singularities, respectively. In this paper, we reformulate this correspondence by means of the notion of the test ideal, and generalize it to wider cl...
متن کاملAn Interpretation of Multiplier Ideals via Tight Closure
Hara [Ha3] and Smith [Sm2] independently proved that in a normal Q-Gorenstein ring of characteristic p ≫ 0, the test ideal coincides with the multiplier ideal associated to the trivial divisor. We extend this result for a pair (R,∆) of a normal ring R and an effective Q-Weil divisor ∆ on SpecR. As a corollary, we obtain the equivalence of strongly F-regular pairs and klt pairs.
متن کاملA Generalization of Tight Closure and Multiplier Ideals
We introduce a new variant of tight closure associated to any fixed ideal a, which we call a-tight closure, and study various properties thereof. In our theory, the annihilator ideal τ(a) of all a-tight closure relations, which is a generalization of the test ideal in the usual tight closure theory, plays a particularly important role. We prove the correspondence of the ideal τ(a) and the multi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Honam Mathematical Journal
سال: 2010
ISSN: 1225-293X
DOI: 10.5831/hmj.2010.32.4.675